
Hybrid Mobile 
Applications -
ICD0018
TalTech IT College, Andres Käver, 2021-2022, Fall semester
Email: andres.kaver@taltech.ee

1

mailto:ndres.kaver@taltech.ee


React N – Class vs Functional

u React and React Native has two approaches how to write 
components

u Class based – classical, full support
u Functional

u Initially limited, no state

u Hooks were implemented at the start of 2019

u Now the recommended way!

u Some edge cases still need class-based components (lifecycle events)

2



React N – Class based component

u Class based component inherits from Component<P={}, S={}>
u Declare interfaces for properties and state
u Properties – read-only data from parent component
u State – components internal data, set initial value in constructor

3

export interface Props {
label: string;

}

export interface State {
counter: number;

}

export class Hello extends Component<Props, State> {
constructor(props: Props) {

super(props);
this.state = { counter: 0 };

}



React N - Class based component
u Access both state and properties is provided via inheritance.

u this.props.xxx and this.state.xxx

u State – modify state with this.setState({….}) function. Only include 
changed properties as parameters – objects are merged.

u This will allow React to keep track of state changes and only update 
required UI components.

u Never modify state directly!

4

render() {
return (

<View style={styles.root}>
<Button

title="+"
onPress={() => {

this.setState({ counter: this.state.counter + 1 });
}}

/>



React N – functional components

u Properties – declare interface, and specify props as parameter to 
function

u No this in functional components (no object instance here)

5

export interface Props {
label: string;

}

const HelloFn = (props: Props): JSX.Element => (
<View style={styles.root}>

<Text style={styles.greeting}>{props.label}</Text>
</View>

);



React N – functional componets

u State in functional components – use hooks!
u A Hook is a kind of function that lets you “hook into” React features.
u Most common hooks are

u useState

u useEffect

u useContext

u useReducer

6



React N – functional components
u const [state, setState] = useState(initialState);
u Returns a stateful value, and a function to update it.
u useState can be used several times, to create separate state 

containers.

7

const HelloFn = (props: Props): JSX.Element => {
const [counter, setCounter] = useState(0);
return (

<View style={styles.root}>
<Button title="-" onPress={() => setCounter(counter - 1)} />
<Text style={styles.greeting}>

{props.label} {counter}
</Text>
<Button title="+" onPress={() => setCounter(counter + 1)} />

</View>
);

};



React N – functional components

u Unlike setState in class components, useState does not merge 
update objects. Use object spread syntax.

u Another option is useReducer, which is more suited for managing 
state objects that contain multiple sub-values.

u If the new state is computed using the previous state, you can pass 
a function to setState. The function will receive the previous value 
and return an updated value. 

8



React N

u THE END!

9


