
Hybrid Mobile
Applications -
ICD0018
TalTech IT College, Andres Käver, 2021-2022, Fall semester
Email: andres.kaver@taltech.ee

1

mailto:andres.kaver@taltech.ee

Native SDKs 2

Flutter 3

Flutter

u Install (Xcode and/or Android studio required)
u Win

u https://storage.googleapis.com/flutter_infra_release/releases/stable/windows/flutter_win
dows_2.5.2-stable.zip

u macOS
u https://storage.googleapis.com/flutter_infra_release/releases/stable/macos/flutter_mac

os_2.5.2-stable.zip

u Linux
u https://storage.googleapis.com/flutter_infra_release/releases/stable/linux/flutter_linux_2.

5.2-stable.tar.xz

4

https://storage.googleapis.com/flutter_infra_release/releases/stable/windows/flutter_windows_2.5.2-stable.zip
https://storage.googleapis.com/flutter_infra_release/releases/stable/macos/flutter_macos_2.5.2-stable.zip
https://storage.googleapis.com/flutter_infra_release/releases/stable/linux/flutter_linux_2.5.2-stable.tar.xz

Flutter

u Set up path variable
export PATH="$PATH:[PATH_TO_FLUTTER_GIT_DIRECTORY]/flutter/bin"

u Run

> flutter precache
> flutter doctor

u Fix all problems!

5

Flutter - IDE

u Either VS Code or Android Studio
u VS Code

u Install Flutter extension

u Android Studio
u Install Flutter and Dart plugin

u Run again
> flutter doctor

6

Flutter – First app – VS Code

u View > Command Palette.
u Flutter: New Project
u Give name and location

u Let everything cool down, look for emulator connection on lower-
right corner

u Select Debug palette, click on Cog wheel
u Create flutter debug configuration

7

Flutter – VS Code

u Run your app
u Debug > Start Debugging

u Or press F5

u Wait for it!

u Try Hot Reload
u Change some strings in main.dart

u Save file

u Activate Dart Dev Tools when asked

8

Flutter - Dart

u Flutter apps are written using the Dart programming language, also
originally from Google and now an ECMA standard.

u Dart shares many of the same features as other modern languages
such as Kotlin and Swift and can be trans-compiled into JavaScript
code.

u As a cross-platform framework, Flutter most closely resembles React
Native, as Flutter allows for a reactive and declarative style of
programming.

9

Flutter - Dart

u https://dart.dev/
u https://dart.dev/guides/language/language-tour

u Strongly typed, Single inheritance
u Mixins
u Implicit interfaces (every class is also an Interface)
u Implements for interfaces, extends for inheritance, with for mixin

10

https://dart.dev/
https://dart.dev/guides/language/language-tour

Flutter - Widget
u Everything is widget!

u Images, icons, and text in a Flutter app
are all widgets. Even layout elements
such as the rows, columns, and grids that
arrange, constrain, and align other
widgets, are widgets themselves.

11

import 'package:flutter/material.dart';

void main() => runApp(const MyApp());

class MyApp extends StatelessWidget {
const MyApp({Key? key}) : super(key: key);

@override
Widget build(BuildContext context) {

return MaterialApp(
title: 'Flutter',
home: Scaffold(

appBar: AppBar(
title: const Text('Flutter’),

),
body: const Center(

child: Text('Hello, World!’),
),

),
);

}
}

Flutter - Widgets

u Widgets describe what their view should look like given their current
configuration and state.

u When a widget’s state changes, the widget rebuilds its description,
which the framework diffs against the previous description in order
to determine the minimal changes needed in the underlying render
tree to transition from one state to the next.

u Widgets are subclasses mostly of either StatelessWidget or
StatefulWidget, depending on whether your widget manages any
state.

u Main task is to implement a build() function, which describes the
widget in terms of other, lower-level widgets.

u Lowest widget is RenderObjectWidget

12

Flutter - StatelessWidget

u User interface does not depend
on anything other than the
configuration information in the
object/widget itself and the
BuildContext in which the widget
is inflated

u Stateless widgets receive
arguments from their parent
widget, which they store in final
member variables. When a
widget is asked to build(), it uses
these stored values to derive new
arguments for the widgets it
creates.

13

class Frog extends StatelessWidget {
const Frog({

Key? key,
this.color = const Color(0xFF2DBD3A),
this.child,

}) : super(key: key);

final Color color;
final Widget child;

@override
Widget build(BuildContext context) {

return Container(color: color, child: child);
}

}

Flutter - StatefulWidget

u A widget that has mutable state.
u When the part of the user interface can change dynamically, e.g.,

due to having an internal clock-driven state, or depending on some
system state.

14

Flutter - StatefulWidget 15

class Bird extends StatefulWidget {
const Bird({

Key? key,
this.color =

const Color(0xFFFFE306),
required this.child,

}) : super(key: key);

final Color color;
final Widget child;

@override
_BirdState createState() =>

_BirdState();
}

class _BirdState extends State<Bird> {
double _size = 1.0;

void grow() {
setState(() {

_size += 0.1;
});

}

@override
Widget build(BuildContext context) {

return Container(
color: widget.color,
transform: Matrix4

.diagonal3Values(_size, _size, 1.0),
child: widget.child,

);
}

}

Flutter - StatefulWidget

u Widget constructors only use named arguments.
u Named arguments can be marked as required using @required.
u The first argument is key, and the last argument is child, children, or

the equivalent.

16

Flutter - Basic widgets

u Text
u The Text widget lets you create a run of styled text within your

application.

u Row, Column
u These flex widgets let you create flexible layouts in both the horizontal

(Row) and vertical (Column) directions. The design of these objects is
based on the web’s flexbox layout model.

17

Flutter - Basic widgets

u Stack
u Instead of being linearly oriented (either horizontally or vertically), a

Stack widget lets you place widgets on top of each other in paint order.
You can then use the Positioned widget on children of a Stack to
position them relative to the top, right, bottom, or left edge of the stack.
Stacks are based on the web’s absolute positioning layout model.

u Container
u The Container widget lets you create a rectangular visual element. A

container can be decorated with a BoxDecoration, such as a
background, a border, or a shadow. A Container can also have
margins, padding, and constraints applied to its size. In addition, a
Container can be transformed in three-dimensional space using a
matrix.

18

Flutter

u THE END

19

Flutter 20

Flutter 21

Flutter 22

Flutter 23

Flutter

u Lets add a Row

24
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {

return MaterialApp(
title: 'Flutter',
home: Scaffold(

appBar: AppBar(
title: Text('Flutter'),

),
body: Center(

child: Text('Hello, World!'),
),

),
);

}
}

body: Center(
child: Row(

mainAxisAlignment:
MainAxisAlignment.center,

children: <Widget>[
Text('0'),
Text('0'),
Text('0'),

],
),

),

Flutter

u Move numbers to separate Widgets

25

class CustomTextContainer extends StatelessWidget {
@override
Widget build(BuildContext context) {

return Text('00');
}

}

children: <Widget>[
CustomTextContainer(),
CustomTextContainer(),
CustomTextContainer(),

],

Flutter 26

Flutter 27

Flutter 28

Flutter 29

Flutter 30

