Hybrid Moblle i

Applications -
|[CDO0018

TalTech IT College, Andres Kaver, 2021-2022, Fall semester

Email: andres.kaver@taltech.ee f\/\<

mailto:andres.kaver@taltech.ee

Native SDKS

OEM SDKs

Application

OEM Widgets
Cupertino
Java Material Design

Kotlin

Services

Swift

Objective-c Susioots
ooy |

Flutter

Flutter Approach

Application

Flutter Widgets
Cupertino
Material Design

Native ARM
Binary
Code

Platform
Channels

Canvas

Services

e

Flutter Z

» Install (Xcode and/or Android studio required)
» Win

» hitps://storage.googleapis.com/flutter infra release/releases/stable/windows/flutter win

dows 2.5.2-stable.zip
» MmacOS

» hitps://storage.googleapis.com/flutter infra release/releases/stable/macos/flutter mac
os 2.5.2-stable.zip

» Linux

» hitps://storage.gooagleapis.com/flutter infra release/releases/stable/linux/flutter linux 2.
5.2-stable.tar.xz

https://storage.googleapis.com/flutter_infra_release/releases/stable/windows/flutter_windows_2.5.2-stable.zip
https://storage.googleapis.com/flutter_infra_release/releases/stable/macos/flutter_macos_2.5.2-stable.zip
https://storage.googleapis.com/flutter_infra_release/releases/stable/linux/flutter_linux_2.5.2-stable.tar.xz

Flutter

» Set up path variable
export PATH="$PATH:[PATH_TO_FLUTTER_GIT_DIRECTORY]/flutter/bin"

» Run

> flutter precache
> flutter doctor

» Fix all problems!

Flutter - |

DE

» Either VS Code or Android Studio

» VS Code

» Install Flutter extension
» Android Studio
» Install Flutter and Dart plugin

» Run again

> flutter doctor

Flutter — First app — VS Code 7

» View > Command Palette.
» Flutter: New Project

» Give name and location

» Let everything cool down, look for emulator connection on lower-
right corner

Ln1, Col1 Spaces:2 UTF-8 LF Dart Nexus5X APl 28 (android-x86 emulator) & [1

» Select Debug palette, click on Cog wheel e > | No Configurations & &8

» Create flutter debug configuration

Flutter — VS Code

» Run your app
» Debug > Start Debugging
» Or press FS

» Wait for if!

» Try Hot Reload
» Change some strings in main.dart

» Save file

» Activate Dart Dev Tools when asked

Flutter - Dart

>

>

Flutter apps are written using the Dart programming language, also
originally from Google and now an ECMA standard.

Dart shares many of the same features as other modern languages
such as Kotlin and Swift and can be frans-compiled into JavaScript

code.

As a cross-platform framework, Flutter most closely resembles React
Native, as Flutter allows for a reactive and declarative style of
programming.

Flutter - Dart

v

vV v v Vv

hitps://dart.dev/
https://dart.dev/quides/language/language-tour

Strongly typed, Single inheritance
Mixins
Implicit interfaces (every class is also an Interface)

Implements for interfaces, extends for inheritance, with for mixin

10

https://dart.dev/
https://dart.dev/guides/language/language-tour

import 'package:flutter/material.dart’;

void main() => runApp(const MyApp());

class MyApp extends StatelessWidget {
const MyApp({Key? key}) : super(key: key);

@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Flutter’',
home: Scaffold(
appBar: AppBar(
title: const Text('Flutter’),
),

body: const Center(
child: Text('Hello, World!'’),

Flutter - Widgets Y

» Widgets describe what their view should look like given their current
configuration and state.

» When a widget’s state changes, the widget rebuilds its description,
which the framework diffs against the previous description in order
to determine the minimal changes needed in the underlying render
tree to fransition from one state to the next.

» Widgets are subclasses mostly of either StatelessWidget or
StatefulWidget, depending on whether your widget manages any
state.

» Main task is to implement a build() function, which describes the
widget in terms of other, lower-level widgets.

» Lowest widget is RenderObjectWidget

class Frog extends StatelessWidget {

const Frog({
Key? key,
this.color = const Color(@xFF2DBD3A),
this.child,

}) : super(key: key);

final Color color;
final Widget child;

@override
Widget build(BuildContext context) {
return Container(color: color, child: child);

}
}

Flutter - StatefulWidget

» A widget that has mutable state.

» When the part of the user interface can change dynamically, e.g.,

due to having an internal clock-driven state, or depending on some
system state.

14

class Bird extends StatefulWidget {
const Bird({
Key? key,
this.color =
const Color(@xFFFFE306),
required this.child,
}) & super(key: key);

final Color color;
final Widget child;

@override
_BirdState createState() =>
_BirdState();

class _BirdState extends State<Bird> {
double size = 1.0;

void grow() A{
setState(() {
_size += 0.1;
});
}

@override
Widget build(BuildContext context) {
return Container(

color: widget.color,

transform: Matrix4
.diagonal3Values(_size, _size, 1.0),

child: widget.child,

);

}

Flutter - StatefulWidget

» Widget constructors only use named arguments.
» Named arguments can be marked as required using @required.

» The first argument is key, and the last argument is child, children, or
the equivalent.

16

Flutter - Basic widgets

» Text

» The Text widget lets you create a run of styled text within your
application.

» Row, Column

» These flex widgets let you create flexible layouts in both the horizontal
(Row) and vertical (Column) directions. The design of these objects is
based on the web'’s flexbox layout model.

17

Flutter - Basic widgets

» Stack

» Instead of being linearly oriented (either horizontally or vertically), a

Stack widget lets you place widgets on top of each other in paint order.

You can then use the Positioned widget on children of a Stack to

position them relative to the top, right, bottom, or left edge of the stack.

Stacks are based on the web’s absolute positioning layout model.

» Container

» The Container widget lets you create a rectangular visual element. A
container can be decorated with a BoxDecoration, such as a
background, a border, or a shadow. A Container can also have
margins, padding, and constraints applied to its size. In addition, a
Container can be transformed in three-dimensional space using a
matrix.

18

Flutter

» THE END

19

Flutter

20

Flutter

A

Flutter

22

Flutter

23

import 'package:flutter/material.dart’;
void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Flutter',
home: Scaffold(
appBar: AppBar(
title: Text('Flutter'),
)
body: Center(
child: Text('Hello, World!'),

body: Center(
child: Row(
mainAxisAlignment:
MainAxisAlignment.center,
children: <Widget>][
Text('0"'),
Text('0"'),
Text('0"'),

class CustomTextContainer extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Text('00');
s
s

children: <Widget>|
CustomTextContainer(),
CustomTextContainer(),
CustomTextContainer(),

1,

Flutter

26

Flutter

27

Flutter

28

Flutter

29

Flutter

30

